Data Mining Modeling in Clustering Car Products Sales Data in the Automotive Industry in Indonesia
Downloads
Additional Files
Downloads
M. Ahyat, O. Afriwan, E. Y. Saniah, and A. M. Saputra, "Digital Transformational Leadership A Village Head On Organizational Citizenship Behavior Through Work Climate And Job Satisfaction Village Officials In Lombok Island,” J. Manaj. Ind. dan Logistik, vol. 6, no. 2, pp. 242–255, 2022.
S. Sabil, A. Djakasaputra, B. M. A. S. A. Bangkara, S. O. Manullang, and P. Hendriarto, "Understanding Business Management Strategies in Enhancing Profitable and Sustainable SMEs,” J. Manaj. Ind. dan Logistik, vol. 6, no. 1, pp. 112–131, 2022, doi: 10.30988/jmil.v6i1.989.
C. Llopis-Albert, F. Rubio, and F. Valero, "Impact of digital transformation on the automotive industry,” Technol. Forecast. Soc. Change, vol. 162, no. June 2020, p. 120343, 2021, doi: 10.1016/j.techfore.2020.120343.
Y. Lixin, Y. Jiaxun, and W. Wenbin, "Research and Application on the Governance of Passenger Car Product Data Resources,” Proc. - 2020 Int. Conf. Big Data Soc. Sci. ICBDSS 2020, pp. 46–49, 2020, doi: 10.1109/ICBDSS51270.2020.00018.
C. J. Wang and B. G. Kim, "Automotive Big Data Pipeline: Disaggregated Hyper-Converged Infrastructure vs Hyper-Converged Infrastructure,” Proc. - 2020 IEEE Int. Conf. Big Data, Big Data 2020, pp. 1784–1787, 2020, doi: 10.1109/BigData50022.2020.9378045.
A. Luckow, K. Kennedy, F. Manhardt, E. Djerekarov, B. Vorster, and A. Apon, "Automotive Big Data : Applications , Workloads and Infrastructures,” in 2015 IEEE International Conference on Big Data (Big Data) Automotive, 2015, pp. 1201–1210.
W. Yuanting et al., "Research and Application of Big Data Analysis Platform for Oil Production Engineering in Huabei Oilfield,” 2019 4th IEEE Int. Conf. Big Data Anal. ICBDA 2019, pp. 148–151, 2019, doi: 10.1109/ICBDA.2019.8713238.
M. Kim, "A data mining framework for financial prediction,” Expert Syst. Appl., vol. 173, no. January, p. 114651, 2021, doi: 10.1016/j.eswa.2021.114651.
A. S. Khwaja, M. Naeem, A. Anpalagan, A. Venetsanopoulos, and B. Venkatesh, "Improved short-term load forecasting using bagged neural networks,” Electr. Power Syst. Res., vol. 125, pp. 109–115, 2015, doi: 10.1016/j.epsr.2015.03.027.
M. Johanson, S. Belenki, J. Jalminger, and M. Fant, "Leveraging large volumes of data for knowledge-driven product development,” IEEE Big Data, pp. 736–741, 2014.
A. A. C. Vieira, L. M. S. Dias, M. Y. Santos, G. A. B. Pereira, and J. A. Oliveira, "Simulation of an automotive supply chain using big data,” Comput. Ind. Eng., vol. 137, no. August, p. 106033, 2019, doi: 10.1016/j.cie.2019.106033.
A. Dacal-Nieto, J. J. Areal, V. Alonso-Ramos, and M. Lluch, "Integrating a data analytics system in automotive manufacturing: Background, methodology and learned lessons,” Procedia Comput. Sci., vol. 200, pp. 718–726, 2022, doi: 10.1016/j.procs.2022.01.270.
T. Widmer, A. Klein, P. Wachter, and S. Meyl, "Predicting Material Requirements in the Automotive Industry Using Data Mining,” Lect. Notes Bus. Inf. Process., vol. 354, no. May 2019, pp. 147–161, 2019, doi: 10.1007/978-3-030-20482-2_13.
J. Orlovska, C. Wickman, and R. Söderberg, "Big Data Usage Can Be a Solution for User Behavior Evaluation: An Automotive Industry Example.,” Procedia CIRP, vol. 72, pp. 117–122, 2018, doi: 10.1016/j.procir.2018.03.102.
M. Romelfanger and M. Kolich, "Comfortable automotive seat design and big data analytics: A study in thigh support,” Appl. Ergon., vol. 75, no. May 2018, pp. 257–262, 2019, doi: 10.1016/j.apergo.2018.08.020.
P. Kowalczyk, M. Komorkiewicz, P. Skruch, and M. Szelest, "Efficient Characterization Method for Big Automotive Datasets Used for Perception System Development and Verification,” IEEE Access, vol. 10, pp. 12629–12643, 2022, doi: 10.1109/ACCESS.2022.3145192.
I. Bin Aris, R. K. Z. Sahbusdin, and A. F. M. Amin, "Impacts of IoT and big data to automotive industry,” 2015 10th Asian Control Conf. Emerg. Control Tech. a Sustain. World, ASCC 2015, 2015, doi: 10.1109/ASCC.2015.7244878.
S. Shukla, "A Review ON K-means DATA Clustering APPROACH,” Int. J. Inf. Comput. Technol., vol. 4, no. 17, pp. 1847–1860, 2014, [Online]. Available: http://www.irphouse.com.
K. P. Sinaga and M. Yang, "Unsupervised K-Means Clustering Algorithm,” IEEE Access, vol. 8, pp. 1–12, 2020.
A. Ali Hussein and A. Oluwaseun, "Data Mining Application Using Clustering Techniques (K-Means Algorithm) In The Analysis Of Student's Result,” J. Multidiscip. Eng. Sci. Stud., vol. 5, no. May, pp. 2587–2593, 2019.
N. Singh and D. Singh, "Performance Evaluation of K-Means and Heirarichal Clustering in Terms of Accuracy and Running Time,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 3, pp. 4119–4121, 2012.
D. Das, P. Kayal, and M. Maiti, "A K-means clustering model for analyzing the Bitcoin extreme value returns,” Decis. Anal. J., vol. 6, no. December 2022, 2023, doi: 10.1016/j.dajour.2022.100152.
S. Gultom, S. Sriadhi, M. Martiano, and J. Simarmata, "Comparison analysis of K-Means and K-Medoid with Ecluidience Distance Algorithm, Chanberra Distance, and Chebyshev Distance for Big Data Clustering,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, 2018, doi: 10.1088/1757-899X/420/1/012092.
M. A. Aziz et al., "Comparison of K-Medoids Algorithm with K-Means on Number of Student Dropped Out,” APICS 2022 - 2022 1st Int. Conf. Smart Technol. Appl. Informatics, Eng. Proc., pp. 53–58, 2022, doi: 10.1109/APICS56469.2022.9918789.
Q. Zhang, A. R. Abdullah, C. W. Chong, and M. H. Ali, "E-Commerce Information System Management Based on Data Mining and Neural Network Algorithms,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/1499801.
M. K. Ha, T. X. Trinh, J. S. Choi, D. Maulina, H. G. Byun, and T. H. Yoon, "Toxicity Classification of Oxide Nanomaterials: Effects of Data Gap Filling and PChem Score-based Screening Approaches,” Sci. Rep., vol. 8, no. 1, pp. 1–12, 2018, doi: 10.1038/s41598-018-21431-9.
T. Yuniarti, I. Surjandari, E. Muslim, and E. Laoh, "Data mining approach for short term load forecasting by combining wavelet transform and group method of data handling (WGMDH),” Proceeding - 2017 3rd Int. Conf. Sci. Inf. Technol. Theory Appl. IT Educ. Ind. Soc. Big Data Era, ICSITech 2017, vol. 2018-Janua, pp. 53–58, 2017, doi: 10.1109/ICSITech.2017.8257085.
J. Gong, "In-depth Data Mining Method of Network Shared Resources Based on K-means Clustering,” Proc. - 2021 13th Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA 2021, pp. 694–698, 2021, doi: 10.1109/ICMTMA52658.2021.00160.
H. Bian, Y. Zhong, J. Sun, and F. Shi, "Study on power consumption load forecast based on K-means clustering and FCM–BP model,” Energy Reports, vol. 6, pp. 693–700, 2020, doi: 10.1016/j.egyr.2020.11.148.
H. Shen and Z. Duan, "Application research of clustering algorithm based on K-means in data mining,” Proc. - 2020 Int. Conf. Comput. Inf. Big Data Appl. CIBDA 2020, pp. 66–69, 2020, doi: 10.1109/CIBDA50819.2020.00023.
S. Kapil and M. Chawla, "Performance Evaluation of K-means Clustering Algorithm with Various Distance Metrics,” in 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES-2016) Performance, 2016, pp. 1–4, doi: 10.1109/ICPEICES.2016.7853264.
A. K. Singh, S. Mittal, P. Malhotra, and Y. V. Srivastava, "Clustering Evaluation by Davies-Bouldin Index(DBI) in Cereal data using K-Means,” Proc. 4th Int. Conf. Comput. Methodol. Commun. ICCMC 2020, no. Iccmc, pp. 306–310, 2020, doi: 10.1109/ICCMC48092.2020.ICCMC-00057.
A. Viloria and O. B. P. Lezama, "Improvements for determining the number of clusters in k-means for innovation databases in SMEs,” Procedia Comput. Sci., vol. 151, no. 2018, pp. 1201–1206, 2019, doi: 10.1016/j.procs.2019.04.172.
E. Rabiaa, B. Noura, and C. Adnene, "Improvements in LEACH based on K-means and Gauss algorithms,” Procedia Comput. Sci., vol. 73, no. Awict, pp. 460–467, 2015, doi: 10.1016/j.procs.2015.12.046.
S. Ruuska, W. Hämäläinen, S. Kajava, M. Mughal, P. Matilainen, and J. Mononen, "Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle,” Behav. Processes, vol. 148, no. March 2017, pp. 56–62, 2018, doi: 10.1016/j.beproc.2018.01.004.
JMIL Jurnal Manajemen Industri dan Logistik (Journal of Industrial and Logistics Management) is an Open Access Journal. The authors who publish the manuscript in JMIL Jurnal Manajemen Industri dan Logistik agree to the following terms:
JMIL Jurnal Manajemen Industri dan Logistik is licensed under a Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.
This means:
(1) Under the CC-BY license, authors retain ownership of the copyright for their article, but authors grant others permission to use the content of publications in JMIL Jurnal Manajemen Industri dan Logistik in whole or in part provided that the original work is properly cited. Users (redistributors) of JMIL Jurnal Manajemen Industri dan Logistik are required to cite the original source, including the author's names, JMIL Jurnal Manajemen Industri dan Logistik as the initial source of publication, year of publication, volume number, issue, and Digital Object Identifier (DOI); (2) Authors grant JMIL Jurnal Manajemen Industri dan Logistik the right of first publication. Although authors remain the copyright owner.